Большая техническая энциклопедия
1 2 3 4 6
C J W Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
МА МГ МЕ МИ МЛ МН МО МУ МЫ

Максимальное значение - энтропия

 
Находя максимальное значение энтропии, мы получаем совершенно аналогично классическому случаю закон распределения молекул по энергетическим уровням.
И обозначает максимальное значение энтропии.
Доказать необходимость максимального значения энтропии для равновесного состояния системы на основе обобщенного уравнения термодинамики невозможно. Однако равновесие невозможно при немаксимальном значении энтропии.
При наличии максимального значения энтропии Н ( х, у) система не имеет никакой организации и значения величин х и у не связаны между собой.
Доказать необходимость максимального значения энтропии для равновесного состояния системы на основе обобщенного уравнения термодинамики невозможно. Однако равновесие невозможно при немаксимальном значении энтропии.
Формула (1.1) выражает максимальное значение энтропии (1.8); когда все возможные состояния системы равновероятны, она наиболее неупо-рядоченна, а следовательно, ее энтропия должна иметь наибольшее значение.
Другими словами, максимальное значение энтропии коррозионной пары с конечным числом состояний равно логарифму этого числа и достигает Smax тогда, когда все состояния равновероятны. В случае, если состояния коррозионной пары известны заранее, то ее энтропия равна нулю.
Состояние системы с максимальным значением энтропии и есть состояние устойчивого равновесия. Действительно, в этом состоянии в системе необратимые процессы протекать не могут, так как в противном случае энтропия системы должна была бы возрастать, чего быть не может.
Так как состояние равновесия отвечает максимальному значению энтропии, а потоки в этом состоянии исчезают, то все параметры в равновесном состоянии обращаются в нуль.
Метастабильное состояние равновесия характеризуется также максимальным значением энтропии ( и минимумами энергии и термодинамических потенциалов), но для системы возможны и другие состояния равновесия, в которых при тех же значениях энергии, объема и количеств веществ энтропия имеет еще большие значения.
Если термодинамическое равновесие, которое соответствует максимальному значению энтропии, имеет лишь статистическую природу, то следует ожидать отклонений от наиболее вероятных значений при наблюдениях в очень малых областях. С этими флуктуациями плотности связано рассеяние света в атмосфере, в частности цвет неба; теория этого явления позволяет вычислить число Авогадро из спектрального распределения интенсивности рассеянного света. Если в жидкости имеются малые, но все же заметные под микроскопом частицы ( коллоидные частицы), то видно их нерегулярное дрожание, обусловленное тем, что удары молекул жидкости с разных сторон не в точности уравновешиваются в каждое мгновение: то с одной, то с другой стороны частицу ударяет большее число молекул, и она смещается в соответствующем направлении. Сущность этого явления, названного броуновским движением ( в честь английского ботаника Броуна), долго оставалась неясной. Но под микроскопом наблюдается скорость, на много порядков меньшая, если определять ее обычным образом как отношение пути ко времени. В действительности же скорость частицы столь часто меняет свое направление, что наблюдаемое движение такой частицы представляет собой лишь грубое приближение истинного зигзагообразного движения.
Если система находится в состоянии равновесия, характеризующемся максимальным значением энтропии, то наиболее вероятными будут процессы, при которых энтропия системы не изменяется. Из сопоставления этих выводов со вторым началом термодинамики видна их эквивалентность.
В данном примере ( при двух возможных исходах) максимальное значение энтропии равно одной двоичной единице.
При этом следует учесть, что распределение Флори дает максимальное значение энтропии.
Изменение энтропии изолированной системы конечных размеров.
Система в основном находится в равновесном состоянии, отвечающем максимальному значению энтропии системы; отклонившись от этого состояния, система затем возвращается к нему. При наблюдении системы продолжительное время можно отметить, что случаи увеличения и уменьшения энтропии встречаются одинаково часто, причем время повторяемости какого-либо отклонения системы от равновесного состояния тем больше, чем меньше вероятность данного неравновесного состояния. С увеличением размеров системы время повторяемости быстро возрастает. Поэтому процессы, являющиеся необратимыми с точки зрения обычной термодинамики, представляются практически необратимыми и со статистической точки зрения. Указанное обстоятельство сближает обе формулировки второго начала термодинамики и практически снимает отмеченное выше и различие.
Докажем для простейшего случая ( для однофазной системы), что максимальное значение энтропии или минимальное значение свободной энергии системы соответствуют равнораспределению изотопов. Пусть далее в соединении АХ содержится а р п атомов элемента X, участвующего в обмене.
Можно показать, что при заданной дисперсии состояний о распределение по нормальному закону дает максимальное значение энтропии.
Самопроизвольные процессы в изолированных системах могут протекать лишь в сторону возрастания энтропии, а равновесию соответствует максимальное значение энтропии.
Вводя скорости и рассматривая неравновесные состояния, представляющие собой организмы, мы лишаемся такого надежного критерия, как максимальное значение энтропии, и должны попытаться найти другие основания для отбора состояний, являющихся устойчивыми.
Температуры стеклования и плавления ряда полимеров, области их применения. При деформации такой системы суммарная величина статистической неупорядоченности уменьшается, поэтому система стремится возвратиться к состоянию, которому отвечает максимальное значение энтропии.
Глубина самопроизвольных процессов определяется величиной энтропии каждого из тел, между которыми осуществляется какой-либо процесс, прекращающийся при достижении максимального значения энтропии, после чего система вступает в тепловое равновесное состояние, выйти из которого самопроизвольно не может.
Молекулярно-массовое распределение полигексаметиленадипамида по. При выводе этого уравнения принимается основное допущение о независимости реакционной способности молекул от величины молекулярной массы, а также допущения о максимальном значении энтропии для данного равновесного фракционного состава, об изменении фракционного состава при данной средней молекулярной массе только за счет изменения энтропии.
Равновесию гетерогенных систем отвечает равенство химических потенциалов каждого компонента во всех фазах, а также минимальное значение одного из термодинамических потенциалов или максимальное значение энтропии всей системы при соответствующих условиях. Наиболее обычными условиями на практике являются постоянная температура и постоянное давление, поэтому мы будем оценивать равновесие гетерогенных систем по их изобарному потенциалу.
Равновесию гетерогенных систем отвечает равенство химических потенциалов каждого компонента во всех фазах, а также минимальное значение изохорного или изобарного потенциалов или максимальное значение энтропии всей системы при определенных условиях. Если в систему входит хотя бы одна фаза, состав которой изменяется в процессе приближения к равновесию, то равновесное состояние фазы и всей системы характеризуется константой равновесия, например в системах, состоящих из индивидуальных веществ в конденсированном состоянии и газов. В системах, состоящих из индивидуальных веществ в конденсированном состоянии, в которых состав фаз в ходе процесса не изменяется, а процесс идет до полного исчезновения одного из исходных веществ ( например, полиморфные превращения веществ), понятие константы равновесия неприменимо.
Равновесию гетерогенных систем отвечает равенство химических потенциалов каждого компонента во всех фазах, а также минимальное значение одного из термодинамических потенциалов или максимальное значение энтропии всей системы при соответствующих условиях. Наиболее обычными условиями на практике являются постоянная температура и постоянное давление, поэтому мы будем оценивать равновесие гетерогенных систем по их изобарному потенциалу.
Принимая во внимание молекулярную природу рабочего вещества и флуктуации в нем внутренних параметров, можно отметить, что без установления равновесия в системе максимальное значение энтропии невозможно достигнуть. Флуктуации приводят систему к равновесию. Именно флуктуации в системах приводят к необходимости максимума энтропии при равновесии всякий раз, когда это условие не выполняется, то есть система выведена из равновесия.
Принимая во внимание молекулярную природу рабочего вещества и флуктуации в нем внутренних параметров, можно отметить, что без установления равновесия в системе максимальное значение энтропии невозможно достигнуть. Флуктуации приводят систему к равновесию. Именно флуктуации в системах приводят к необходимости максимума энтропии при равновесии всякий раз, когда это условие не выполняется, то есть система выведена из равновесия.

Таким образом, основная причина упругости при деформации в высокоэластическом состоянии и возникновения напряжений в образце заключается в изменении конформации и переходе из равновесной формы статистического клубка с максимальным значением энтропии в неравновесную с уменьшением энтропии и обратный переход после прекращения деформации. Вклад энергетической составляющей в этот процесс невелик, а для идеальных сеток равен нулю.
ТЕПЛОВАЯ СМЕРТЬ ВСЕЛЕННОЙ - конечное состояние мира, к-рое якобы возникает в результате необратимого превращения всех форм движения в тепловую, рассеяния теплоты в пространстве и перехода мира в состояние равновесия с максимальным значением энтропии. Этот вывод делается на основе абсолютизации второго закона термодинамики и распространения его на всю вселенную.
ТЕПЛОВАЯ СМЕРТЬ ВСЕЛЕННОЙ - конечное состояние мира, к-рое якобы возникает в результате необратимого превращения всех форм движения в тепловую, рассеяния теплоты в пространстве и перехода мира в состояние равновесия с максимальным значением энтропии. Этот вывод делается на основе абсолютизации второго закона термодинамики и распространения его на всю вселенную. Образование звезд и галактик является одним из проявлений этого процесса. Необратимое изменение материи во вселенной не предполагает к.
Второе начало термодинамики устанавливает, что необратимые процессы ( а такими являются практически все тепловые процессы и во всяком случае все естественно протекающие процессы) идут так, что энтропия системы тел, участвующих в процессе, растет, стремясь к максимальному значению. Максимальное значение энтропии достигается тогда, когда система приходит в состояние равновесия.
Свойство энтропии возрастать в необратимых процессах, да и сама необратимость находятся в противоречии с обратимостью всех механических движений и поэтому физический смысл энтропии не столь очевиден, как, например, физический смысл внутренней энергии. Максимальное значение энтропии замкнутой системы достигается тогда, когда система приходит в состояние термодинамического равновесия. Такая количественная формулировка второго закона термодинамики дана Клаузиусом, а ее молекулярно-кинетическое истолкование Больцманом, который ввел в теорию теплоты статистические представления, основанные на том, что необратимость тепловых процессов имеет вероятностный характер.
Соотношение (IX.2) выражает тот факт, что для состояния равновесия изолированной системы имеется условный максимум энтропии. Максимальное значение энтропии изолированной системы определяется заданными значениями энергии и объема системы, а также масс, а следовательно, и числа молей компонентов.
Рост энтропии в любом процессе продолжается не беспредельно, а лишь до определенного максимального значения, характерного для данной системы. Это максимальное значение энтропии соответствует состоянию равновесия, и после того, как оно достигнуто, какие бы то ни было изменения состояния без внешнего воздействия прекращаются.
Рост энтропии в любом процессе продолжается не беспредельно, а лишь до определенного максимального значения, характерного для данной системы. Это максимальное значение энтропии соответствует состоянию равновесия, и после того, как оно достигнуто, ка-кие бы то ни было изменения состояния без внешнего воздействия прекращаются.
Таким образом, в случае равновероятности входных событий энтропия соответствует количеству информации для равновероятных исходов. Хартли соответствует максимальному значению энтропии. Физически это определяет случай, когда неопределенность настолько велика, что прогнозировать оказывается трудно.
Ншкс максимальная 2птропия, возможная для всех составов с данным числом компонентов. Очевидно, максимальным значением энтропии обладают составы, в которых все компоненты находятся в равных концентрациях.
Как видим, наибольшая термодинамическая вероятность получится тогда, когда молекулы равномерно распределятся по участкам. Этому равномерному распределению отвечает максимальное значение энтропии.
Более строгое развитие этого вопроса дается в статистической термодинамике. Отметим только, что максимальное значение энтропии, отвечающее состоянию равновесия, рассматривается лишь как наиболее вероятное. При достаточно большом промежутке времени возможны отклонения от него. В макросистемах для этого требуются времена астрономического порядка. В микроскопических объемах, внутри окружающих нас тел такие изменения происходят постоянно.
Отсюда ясно, что эти процессы будут продолжаться до тех пор, пока энтропия системы не достигнет максимума. Состояние изолированной системы с максимальным значением энтропии и есть состояние устойчи - - вого равновесия.
Отсюда ясно, что эти процессы будут продолжаться до тех пор, пока энтропия системы не достигнет максимума. Состояние изолированной системы с максимальным значением энтропии и есть состояние устойчи - вого равновесия.

Статистический характер закона возрастания энтропии вытекает из самого определения энтропии (III.70), связывающего эту функцию с вероятностью данного макроскопического состояния системы. Однако равновесное состояние, которому отвечает максимальное значение энтропии изолированной системы, наиболее вероятно, причем для макроскопических систем максимум является чрезвычайно резким. Равновесному состоянию макроскопической изолированной системы отвечает почти весь объем энергетического слоя, и изображающая точка системы с вероятностью, близкой к единице, находится Именно в этой области. Если система не находится в состоянии, которому отвечает равновесное значение макроскопического параметра X ( с точностью до интервала ДХ), она почти наверняка придет к этому состоянию; если же система уже находится в этом состоянии, она очень редко будет выходить из него.
Статистический характер закона возрастания энтропии вытекает из самого определения энтропии ( II 1.63), связывающего эту функцию с вероятностью данного макроскопического состояния системы. Однако равновесное состояние, которому отвечает максимальное значение энтропии изолированной системы, наиболее вероятно, причем для макроскопических систем максимум является чрезвычайно резким. Равновесному состоянию макроскопической изолированной системы отвечает почти весь объем энергетического слоя, и изображающая точка системы с ностью, близкой к единице, находится именно в этой области, система не находится в состоянии, которому отвечает равновесное значение макроскопического параметра X ( с точностью до интервала АХ), она почти наверняка придет к этому состоянию; если же система уже находится в этом состоянии, она очень редко будет выходить из него.
Наиболее общие условия равновесия вытекают из утверждения второго закона термодинамики о росте энтропии адиабатически изолированной системы при протекании в ней необратимых процессов. Если некоторое состояние такой системы характеризуется максимальным значением энтропии, то это состояние не может быть неравновесным, так как иначе при релаксации энтропия системы согласно второму закону возрастала бы, что не согласуется с предположением о ее максимальности. Следовательно, условие максимальности энтропии изолированной системы является достаточным условием ее равновесности.
 
Loading
на заглавную 10 самыхСловариО сайтеОбратная связь к началу страницы

© 2008 - 2014
словарь online
словарь
одноклассники
XHTML | CSS
Лицензиар ngpedia.ru
1.8.11