Большая техническая энциклопедия
2 7
A V W
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
МА МГ МЕ МЗ МИ МЛ ММ МН МО МУ МЫ МЯ

Мягкая мода

 
Мягкая мода АФМР имеется не только в антиферромагнетиках ЛП, но также и в тех кристаллах, где возможны ориентационные фазовые переходы, например, в редкоземельных ортоферритах. Особенностью ортоферритов является то, что на их эффективную нелинейность влияет не только внешнее магнитное поле, но и температура.
Эффектом мягкой моды представляется также резкое расширение полос поглощения, порождаемых скелетными колебаниями аниона при Т в, поскольку туннельные переходы протонов ограничивают время жизни каждого аниона в фиксированном состоянии.
Но существование мягкой моды в данном случае является обязательным признаком рассматриваемого ФП второго рода.
В этом случае мягкой модой является второй звук.
Там же рассматриваются и мягкие моды, существенные в задаче о структурных фазовых переходах ( разд.
Поэтому переход связан с затуханием мягкой моды в точке Z зоны Бриллюэна объемноцентрированной тетрагональной решетки. Сегнето-электрическое упорядочение в пределах слоев при температурах выше Тс исчезает вследствие динамического разупорядочения протонов между двумя равновесными положениями в связях О - Н - О.
Хотя взаимодействие Fx слабо влияет на частоту мягкой моды и Гс в дейтерированной системе, оно влияет на частоту ш недейтерированной системы вблизи Гс н и на саму Гс н даже при довольно малых значениях параметра а. При а 1 ( ш) н Ф 0 вплоть до Т 0, в то время как ( ш) D и Гс D совершенно не изменяются.
Конечно, достаточно близко к точке фазового перехода мягкая мода обязательно станет передемпфированной ( сильно затухающий осциллятор), и низкочастотная динамика параметра порядка станет релаксационной.
Зависимость v2 от Т - Тс для мод с частотами 147 см-1 ( и 207 см-1 ( А в спектре КР кварца. Последний интерпретировал моду с частотой 207 см-1 как мягкую моду, частота которой понижается с ростом температуры.
В фононной подсистеме кристаллов типа сегнетовой соли имеет место мягкая мода, частота которой в точках Кюри приближается к нулю, а в промежутке между Тст и ТС. В протонной подсистеме имеет место псевдомягкая мода, частота которой, с приближением к сегнетофазе со стороны высоких температур, медленно понижается ( но при Т Тс2 в нудь не обращается), затем одагодаря фазовому переходу в фононной подсистеме я протон-фононному взаимодействию она начинает повышаться и проходит через максимум в сегнетофазе. В низкотемпературной парафазе частота &0 снова увеличивается.
Спектры КР описаны Скоттом [113], который обнаружил существование мягких мод А и Eg, связанных, по-видимому, с переходом Dsd-Oh. Однако значения Тс, полученные экстраполяцией из этих кривых, не очень точные.
T) уменьшается вместе с Т таким образом, что частота мягкой моды при этом возрастает.
На рис. 5.14 о и 5.14 6 приведена зависимость частоты о параэлектри-ческой мягкой моды от силы взаимодействия F для дейтерированной ( QD 1 К, Гс D 213 К) и недейтерированной ( Он 144 К, ТсН 122 К) систем.

Специфические свойства вырожденных систем обусловлены существованием в их колебательном спектре ветви ( мягкой моды), связанной именно с колебаниями направления вектора параметра порядка; частота этих колебаний обращается в нуль в точке фазового перехода. Закон их дисперсии можно, с одной стороны, найти из макроскопических уравнений движения, а с другой - он должен удовлетворять требованиям масштабной инвариантности. Это позволяет, как мы увидим ниже, полностью выразить кинетические критические индексы через термодинамические.
Специфические свойства вырожденных систем обусловлены существованием в их колебательном спектре ветви ( мягкой моды ], связанной именно с колебаниями направления вектора параметра порядка; частота этих колебаний обращается в нуль в точке фазового перехода. Закон их дисперсии можно, с одной стороны, найти из макроскопических уравнений движения, а с другой - он должен удовлетворять требованиям масштабной инвариантности. Это позволяет, если эта гипотеза верна, полностью выразить кинетические критические индексы через термодинамические.
В точке р 1 - а2 / 2 происходит фазовый переход типа мягкой моды. При р 1 - а2 / 2 распределение перестает быть интегрируемым на интервале [ 0, оо), а стационарная точка х устойчива. Стационарная плотность полностью сконцентрирована в окрестности нуля подобно б-функции Дирака. Таким образом, хотя параметр р может быть меньше единицы, гибель Х - популяции происходит с достоверностью. Резюмируя, можно сказать, что, хотя в этой модели возможна бистабильность, ее свойства, по крайней мере в отношении вопроса об уничтожении Х - популяции, напоминают свойства модели Ферхюльста. Эти переходы происходят независимо от переходов типа критической точки, которые также могут происходить в данной модели.
Все эти обстоятельства свидетельствуют о том, что динамические свойства сегнетоэластиков обусловлены акустической мягкой модой колебаний кристаллической решетки, частота которой критически понижается в области перехода точно так же, как в сегне-тоэлектриках типа смещения понижается частота поперечной оптической моды колебаний. Сегнетоэластические переходы могут быть как второго, так и первого рода. Ниже температуры перехода в сегнетоэластиках может возникать сегнетоэлектрическая фаза. В этом случае сегнетоэласти-ческая фаза одновременно является сегнетоэлектрической.
При уменьшении g до значения g 0 3 эта мода быстро превращается в мягкую моду с нулевой энергией.
В действительности часто оказывается, что указанное требование LU ( Hsf) 0 для предполагаемой мягкой моды не выполняется. Более подробно указанное явление исследовано в работах [11.23-11.25], авторы которых к тому же дали ему и теоретическое объяснение.
Амплитуда рассмотренных выше колебаний пропорциональна квадратному корню из энергии возмущения ( для данного k), но для того чтобы объяснить название мягкая мода, используемое для описания тех колебаний, для которых линеаризованное изложение не проходит, лучше вернуться к квазистатике с возмущающей силой.
Следует отметить все же, что не все переходы этого типа удается рассмотреть в рамках модели фононного спектра, одной из ветвей которого ( мягкой моде) соответствует частота, обращающаяся в нуль по достижении критической температуры. Например, в кристаллах типа КН2РО4 переход в сегнетоэлектрическое состояние связан с перераспределением атомов водорода между ангармоническими потенциальными ямами, обладающими двумя минимумами энергии.
Отличительной особенностью книги является также широта охвата различных физических свойств антиферромагнетиков, начиная от собственно магнитных ( и магниторезонансных) свойств и включая спин-переориентационные фазовые переходы, мягкие моды, кинетические явления ( гальваномагнетизм), оптические и акустические свойства, антиферромагнитные механизмы дифракции света на звуке, и др. Поскольку антиферромагнетики не являются магнитами в обычном понимании этого слова ( как ферро - и ферримагнетики), то изучение указанных выше немагнитных ( но существенно связанных с антиферромагнетизмом. Значение этого замечания возрастает, если вспомнить, что среди магнетиков антиферромагнитно-упорядоченные вещества составляют большинство.
Согласно соотношению Лиддана-Сакса - Теллера это свойство связано с различиями частот продольных OLO и поперечных о) г0 оптических фононов и существованием мягкой поперечной моды. Частота мягкой моды уменьшается ( и е0 повышается) при понижении температуры, причем в GeTe, SnTe, Pbi - xSn Te ( при х 0 1) и Pbi - xGe Te ( при х 0 01) это приводит к переходу в сегнетоэлек-трическую фазу.
Согласно соотношению Лиддана-Сакса - Теллера это свойство связано с различиями частот продольных COLO и поперечных со о оптических фононов и существованием мягкой поперечной моды. Частота мягкой моды уменьшается ( и е0 повышается) при понижении температуры, причем в GeTe, SnTe, Pbi Sn Te ( при х 0 1) и Pbi - xGe Te ( при х 0 01) это приводит к переходу в сегнетоэлек-трическую фазу.
Близкая аналогия между поведением лазера вблизи порога генерации и фазовым переходом второго рода ясно показывает, что кооперативное явление может развиваться даже в условиях, далеких от теплового равновесия. Другими примерами являются мягкие моды в сегнетоэлектрике, химические реакции и турбулентность.
Волны зарядовой плотности в ОКП возникают ввиду того, что межэлектронные взаимодействия делают состояние с осциллирующим в пространстве профилем плотности более выгодным по сравнению с ее равномерным распределением. Данный эффект проявляется [4] как возникновение неустойчивости мягкой моды, связанной с образованием кристалла Вигнера [27], и поэтому состояние волн зарядовой плотности можно рассматривать как фазу, промежуточную между вигнеров-ским кристаллом и обычным металлом с однородным распределением заряда.
При наличии внешнего магнитного поля, имеющего произвольное направление в пространстве, фазы Г2 и Г4 в чистом виде не существуют. Поэтому ориентационных переходов в системе нет, и мягкая мода отсутствует, а нелинейные акустические эффекты малы. Отметим, что при ориентации поля Н строго по оси с подавляется фаза Г2, но остается фазовый переход из Г4 фазы в угловую фазу. В случае Н X остается переход Г2 - угловая фаза.
Используются также резонансные методы, основанные на появлении мягкой моды и центр, пика, к-рые детектируются с помощью комбинационного рассеяния света, Мандельштама - Бриллюэна рассеяния, а также неупругого рассеяния нейтронов.

Значение ч для к-рого ш () 0 ( мягкая мода), соответствует колебанию, по отношению к к-рому поверхность неустойчива. Именно q определяет пространственный период новой устойчивой поверхностной конфигурации атомов, соответствующей реконструированной поверхности.
Отметим, что терминология, употребляемая в динамике решетки, широко используется при описании фазовых переходов типа смещения. При этом параметр порядка называют нормальной координатой, отвечающей мягкой моде; условие устойчивости кристалла, отвечающее минимальности термодинамического потенциала, выражают как условие положительности частот нормальных колебаний и потерю устойчивости как обращение в нуль одной из этих частот. Возникновению в несимметричной фазе равновесного отличного от нуля параметра порядка в этой терминологии соответствует замораживание смещений атомов, отвечающих мягкой моде колебаний.
После вводного рассмотрения теории молекулярного поля в магнетиках и вопроса о критической точке перехода газ-жидкость мы обращаемся к переходу электронная жидкость-электронный кристалл. Затем на базе представления о фононах рассматривается структурная неустойчивость, включая так называемые мягкие моды; в последних при некотором волновом векторе частота фонона становится очень малой. Она связана с изучением электронных состояний, некоторые характеристики которых оказываются такими же, как в одномерных системах. Затем говорится об одномерных проводниках в связи с эффектами электрон-фононного взаимодействия и переходом Пайерлса.
Структурная схема образования дофинейского ( механического двойника в ос-кварце. При этом атомы, лежащие по границам этих доменов, занимают положение в гексагональной структуре, а атомы внутри доменов распределены по двум тригональным позициям. Обращение таких микродоменов с частотой порядка 109 Гц, очевидно, и соответствует упоминавшейся в начале работы мягкой моде, которая для ( 3-кварца была обнаружена и исследована методом неупругого рассеивания нейтронов.
Частоты АФМР при наличии спин флопа. а Квадрат частоты АФМР для YFeOs в зависимости от поля Н ( кривая 1 - при Н с Z. I Х кривая 2 - при Н 1 а X. Т 293 К. 6 Температурная зависимость z / in v2 ( Hn для YFeOs ( о и DyFeOs (, с Температурная зависимость отношения х / Х Для YFeOs и DyFeOs. Кроме того, в соответствии с теорией ФП второго рода, это означает, что ни одна из переменных спин-волнового представления Гз ж у. Другими словами, эта мода ( как и другая, с частотой CJ4 (11.106)) не является мягкой модой.
Основные параметры различных СВЧ-диэлектриков. Антисегнетоэлектрики типа смещения имеют высокую диэлектрическую проницаемость ( есвч30 - 150) и низкие диэлектрические потери, потому что в них СБЧ-дисперсия отсутствует. В этих кристаллах и поликристаллах ТКе0, что обусловлено, как и в монодоменных сегнетоэлектриках, повышением частоты мягкой моды по мере охлаждения кристалла и увеличения внутреннего поля. Антисегнетоэлектрнки с высокой е и положительным ТКе могут также использоваться как термокомпенсаторы параэлектриков. Однако снизить величину ТКе в пределах одного состава здесь, как и в сегнетоэлектрнках, не представляется возможным.
В сегнетоэлектрическом состоянии он имеет пространственную группу симметрии Рс, а в параэлектрическом состоянии - пространственную группу симметрии Р2 / с. Из этого следует, что при фазовом переходе происходит изменение точечной симметрии кристалла от 2 / т до т и затухание мягкой моды Ви в центре зоны Бриллюэна.
Колесико машины Зимана при симметричном расположении конца резинки в точке С находится в асимметричном положении равновесия ( вле-ао или вправо. Поскольку эта система макроскопична ( даже в большей степени, чем машина Зимана. Однако динамика звезды будет более, чем обычно, осложнена вблизи точки бифуркации, ибо звезда приобретает т ] в качестве мягкой моды колебаний с бесконечным периодом в линеаризованном подходе. В действительности чем шире колебания, тем в большей степени члены высших порядков укорачивают период. Могут ли эффекты столь легко возникающего расшатывания проявляться на астрономических расстояниях - это вопрос, достойный рассмотрения; если да, то, по-видимому, имеется достаточно данных, чтобы выбрать кандидатов для изучения среди близких звезд.
Наблюдения изменений в спектрах при приближении к фазовым переходам позволили расширить наши представления об их механизме; в спектрах были также найдены мягкие моды, частоты которых зависят от температуры.
Энергия возбуждения гамов-теллеровского резонанса прямо связана с ядерным спин-изоспииовым взаимодействием при малых переданных импульсах и делает возможным точное определение ферми-жидкостного параметра нуклонов ш - Он оказывается от-талкивателъным и большим ( gW O. При больших передачах импульса такое большое g m сокращает притяжение, в котором доминирует однопионный обмен и которое в противном случае приводило бы к коротковолновым спин-изоспи-новым мягким модам, связанным с пионным конденсатом. Таким образом, пионный конденсат и относящиеся к нему явления в нормальных ядерных системах исключены.
С микроскопической точки зрения сегнетоэлектрические ФП делятся на два больших класса: ФП типа смещения и ФП типа порядок - беспорядок. В первом случае выше точки перехода ( точки Кюри Тк) в кристалле существует неустойчивость по отношению к одному из решеточных колебаний, которое называется мягкой модой. По мере понижения температуры и приближения к Тк частота этой моды понижается и в пределе стремится к нулю.

Мартенситное превращение представляет процесс, постоянное внимание к которому определяется не только его практической значимостью, но и богатством физического содержания картины явления. Уже сформулированные Г. В. Курдюмовым [91] особенности мартенситного превращения - бездиффузионный лавинообразный характер, незавершенность в двухфазной области и принципиальная роль скалывающих компонент упругих напряжений - показали, что использование микроскопической теории фазовых переходов типа смещения, основывающейся на концепции мягкой моды, может объяснить только отдельные стороны явления, но не картину мартенситного превращения в целом.
Энергия активации ES ( Q), фигурирующая в выражении (3.4) для плотности кинков, имеет важное значение в эксперименте [3] и входит также в выражения для статических функций корреляции, для которых также может быть построена общая теория [6] Заметим, что при малых Т плотность солитонов очень мала в отличие от плотности фононов и бризеров. В этой картине мягкие моды, центральные пики и предвестники непосредственно связываются с нелинейными возбуждениями и существуют не только при низких температурах. Например, сейчас считают, что движение кинков ( доменных стенок) является внутренним источником центральных пиков, хотя здесь можно учитывать и другие механизмы.
Вопрос о форме спектра комбинационного рассеяния при низких частотах не относится только к аморфным полупроводникам. Шукер и Гамон первоначально применили свой анализ к стеклообразному SiOa. Другой пример вывода и применения (5.2) был дан Баркером [5.39] для случая низкочастотных мягких мод, связанных с сегнетоэлектрическими фазовыми переходами. Баркер также сравнивает информацию, получаемую с помощью комбинационного рассеяния света и инфракрасного поглощения. Результаты обеих работ находятся в хорошем согласии с данными по удельной теплоемкости в температурном интервале от 3 до 15 К, хотя результаты Шукера и Гамона могут быть несколько улучшены при учете частотной зависимости Сь. Чтобы сделать надежные заключения, необходимо провести более детальный анализ постоянной связи при низких частотах в аморфных материалах.
Такая структурная перестройка происходит, в частности, при сегпетоэлектрическом переходе. Если исходная мода была ди-польно активна, то возникает спонтанный дипольпый момент. Такие моды, частота которых стремится к нулю при изменении температуры, называются мягкими модами. Они определяют сегнетоэлектрический фазовый переход и другие, так называемые структурные, переходы.
Отметим, что терминология, употребляемая в динамике решетки, широко используется при описании фазовых переходов типа смещения. При этом параметр порядка называют нормальной координатой, отвечающей мягкой моде; условие устойчивости кристалла, отвечающее минимальности термодинамического потенциала, выражают как условие положительности частот нормальных колебаний и потерю устойчивости как обращение в нуль одной из этих частот. Возникновению в несимметричной фазе равновесного отличного от нуля параметра порядка в этой терминологии соответствует замораживание смещений атомов, отвечающих мягкой моде колебаний.
Кремний нашел широкое применение и в новой бурно развивающейся области микроэлектроники - в молекулярной электронике. В этом случае для запоминания и переработки информации часто используют слоистые структуры кремний-органический или биоорганический полимер, в частности слои Ленгмюра-Блоджет и жидкие кристаллы. Для передачи информации в них наряду с электронными процессами используют возбужденные состояния молекулярных комплексов, экситоны, поляроны, плазмо-ны, солитоны и др. В этих системах с мягкими модами на поверхности важную роль приобретают обсуждаемые в настоящем разделе процессы перестройки структуры центров захвата и рекомбинации в актах захвата ими неравновесных носителей заряда и миграции выделившейся энергаи в молекулярной и твердотельной системах. Возбужденные молекулярные комплексы могут стимулировать структурные перестройки в органической фазе.
В последнее время различного рода ферми-резонансы в кристаллах ( на фононах, плазмонах, поляритонах) в связи с развитием лазерной спектроскопии все чаще привлекают внимание экспериментаторов. Поэтому ниже мы изложим также основные результаты теории ферми-резонанса в кристаллах. Здесь же отметим лишь, что ферми-резонанс на фононах наблюдал в кварце и А1РО4 Скотт [11], который, пользуясь методом КРС, обнаружил эффекты взаимодействия мод, усиливающиеся по мере того, как зависящая от температуры частота одного из нормальных оптических колебаний ( мягкая мода) проходит через зону двучастичных состояний, отвечающих акустическим фононам.
Другим видом смещений атомов, не меняющим однородности волны, изображенной на рис. 11.3, является изменение амплитуды этой волны. Такое колебание называют амплитудоном. Очевидно, что изменение амплитуды замороженной волны всегда связано с изменением потенциальной энергии, так что частота однородного ам-плитудона вполне конечна. Более того, амплитудон аналогичен мягкой моде для обычных фазовых переходов, поскольку именно амплитуда замороженной волны характеризует значение параметра порядка.
Образование сверхструктуры с периодом, вдвое большим основного периода, как результат замерзания волны смещений с.| Образование несоразмерной фазы как результат замерзания волны смещений с длиной, несоизмеримой с параметром элементарной ячейки. С позиций динамической теории кристаллической решетки возможность образования несоразмерных фаз представляется довольно естественной. Поясним это на примере фазовых переходов типа смещения. X), мы установили, что мягкая мода при этом соответствует волновому вектору k 0, так как минимум мягкой оптической ветви соответствовал центру зоны Бриллюэна. С другой стороны, удвоение числа атомов в элементарной ячейке происходит, когда минимум мягкой оптической ветви соответствует краю зоны Бриллюэна. Что определяет нахождение минимума зависимости to2 ( k) в той или иной точке. Будут ли эти экстремумы максимумами или минимумами, а также имеются ли другие экстремумы на зависимости co2 ( k), определяется спецификой взаимодействий атомов в кристалле.
Завершая статью, мы хотели бы еще раз подчеркнуть основное утверждение, которое служит ее стержнем. Независимо от того, будут ли тахионы когда-нибудь обнаружены в природе как самостоятельные частицы, они уже сегодня составляют важнейший элемент систем, обнаруживающих неустойчивость по отношению к фазовому переходу в стабильное состояние. Именно тахионная мода при своем нарастании со временем осуществляет фазовый переход, разрушая старую фазу и создавая новую. При подходе к точке фазового перехода определяющую роль начинает играть мягкая мода [8], частота которой стремится к нулю, а квадрат ее переходит от положительных значений через нуль к отрицательным. Это и есть тахионная степень свободы, о которой много раз говорилось выше. Параметрами тахиона - скоростью С и ( мнимой) массой Г - определяются характеристики самого фазового перехода и конечного состояния системы. И подчеркнем еще раз: несмотря на свои необычные свойства, тахион - не досужая выдумка теоретиков, а реальная составная часть физической картины мира.
 
Loading
на заглавную 10 самыхСловариО сайтеОбратная связь к началу страницы

© 2008 - 2019
словарь online
электро бритва
словарь
одноклассники
XHTML | CSS
Лицензиар ngpedia.ru
1.8.11