Большая техническая энциклопедия
2 7
A V W
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
РА РЕ РИ РО РТ РУ РЫ РЯ

Регрессионная зависимость

 
Регрессионные зависимости (6.64) - (6.66) приведены на рис. 6.10. Они явились основой для моделирования температурного режима пожара на установке туннельная печь, описание которой приведено в разд.
Регрессионная зависимость может быть и нелинейной.
Регрессионная зависимость может быть в нелинейной.
Получены регрессионные зависимости давления в паровой фазе от соотношения объемов паровой и жидкой фаз товарных нефтей, отличающихся компонентным составом.
Построение регрессионных зависимостей требует знания не кумулятивной функции распределения, а лишь значений соответствующих квантилей.
Получение регрессионных зависимостей для прогнозирования значений показателей ремонтопригодности на каждой из стадий проектирования осуществляется с учетом информации о конструктивных характеристиках машины. Рассмотрим порядок получения моделей на примере машины транспортного типа.
Использование регрессионных зависимостей перепадов давлений в аппаратах ГЦ ХТС от массовых расходов технологических потоков позволяет значительно упростить и сократить время подготовки исходных данных для расчета системы уравнений математической модели ГЦ на ЭВМ.
Окно выбора колонок для построения графика. Получаем регрессионную зависимость для первого графика.
Зависимость концентрации вытесняемой жидкости от относительного объема смеси. Так как регрессионная зависимость ( 84) получена для нефтей с содержанием парафина до 23 %, смол до 16 %, асфальтенов до 20 %, то в этих пределах ее и рекомендуется использовать. В практике эксплуатации нефтебаз часто возникает необходимость в последовательной перекачке нескольких видов нефтепродуктов по одному и тому же трубопроводу. Если после перекачки высоковязкой жидкости начинают перекачивать маловязкую, то в процессе вытеснения может быть случай, когда высоковязкая жидкость движется ла-минарно, а маловязкая - - турбулентно.
Предложены также регрессионные зависимости между магниту-дои М, длиной разрыва L и средним напряжением s, снимаемым в результате разрыва.
При построении регрессионных зависимостей вид кумулятивной функции распределения F ( x) не носит принципиального характера, хотя как известно [90], ввиду используемого в этом случае метода наименьших квадратов полученные оценки наилучшим образом соответствуют нормальному закону распределения.
Задачи восстановления регрессионных зависимостей встречаются во всех областях естествознания при обработке неопределенных данных.
Обширный класс регрессионных зависимостей составляют линейные задачи. Математические модели линейных регрессионных задач - системы линейных уравнений, правая часть которых имеет случайный характер. В некоторых задачах идентификации не только правая часть исходной системы уравнений, но и оператор левой части имеет неопределенный характер и часто задается со случайными погрешностями.

Проверка точности построенной эмпирической регрессионной зависимости и проверка гипотез о параметрах регрессионной модели наиболее эффективно осуществляются при допущении, что величины ц нормально распределены.
В результате получают соответствующие регрессионные зависимости.
Каждый блок описывается соответствующей регрессионной зависимостью.
Если остатки в регрессионных зависимостях, полученных для обучающей выборки в период отлаженного технологического процесса, и соответствующие остатки при оперативном контроле процесса обладают одинаковыми статистическими свойствами, то процесс считается статистически управляемым по рассматриваемой группе показателей и не требует вмешательства. При этом для диагностики процесса в зависимости от конкретной ситуации могут использоваться как обычные карты Шухарта, построенные для регрессионных остатков, так и многомерные карты различных типов.
По этим данным определена регрессионная зависимость uf ( - ca) для каждого электролизера отдельно.
Какие параметры входят в регрессионные зависимости для определения потерь электроэнергии.
В работе [141] получены регрессионные зависимости от циклических изменений температуры стойкости кремниевых фотоэлектрических структур типов п - р-р, п - р, р - р, созданных диффузией фосфора и бора из растворов.
Методика предназначена для получения регрессионных зависимостей, линейных относительно коэффициентов.
По приведенным данным оценка регрессионной зависимости Рц ( руп), о которой говорилось выше, может быть представлена в виде корреляционного уравнения, исходя из какой-либо установленной формы статистической связи для всего выделенного интервала времени в 26 лет.
Целью этих вычислений является построение регрессионной зависимости между плановыми и фактическими данными по потреблению групп нефтей в целом по комплексу НПП.
Несмотря на определенную успешность этих регрессионных зависимостей, они обладают существенными недостатками, значительно снижающими эффективность их применения. Невысокая способность регрессивных моделей к прогнозированию связана с тем, что игнорируется такая важная особенность статистических расчетов, как адекватность модели некоторой однородной совокупности данных. Обычная же практика применения таких моделей для оценки нефтеотдачи этой однородности не учитывает. При этом подразумевается, что чем больше исходных данных по залежам задействовано для построения модели, тем результаты, получаемые на этой модели, более точны и надежны.
Эконометрические модели - это система регрессионных зависимостей и тождеств, с помощью которой делается попытка учесть большее количество факторов, влияющих на электропотребление. При этом, задавая различные комбинации экзогенных показателей, удается моделировать множество вариантов развития электропотребляющего комплекса в отраслевом и региональном аспектах, что сужает зону неопределенности прогноза. При этом экзогенные показатели определяются на основе сценариев экономического роста; при разработке последних используется сочетание формальных процедур и экспертных оценок.
Определение температурного поля на основании регрессионных зависимостей сводится к установлению связей между искомыми температурами в различных точках по глубине слоя и измеренными значениями спектральной интенсивности падающего излучения. Он базируется на данных [71 ] о спектральной поглощательной способности углекислого газа в фундаментальной полосе поглощения 4 3 мкм. Используется то обстоятельство, что коэффициент поглощения СОа претерпевает здесь существенное изменение при переходе от центра полосы к ее крыльям, что создает возможность оптического зондирования газового слоя на различную глубину путем проведения измерений спектральной интенсивности падающего излучения как при лысо-ких, так и при низких значениях оптической глубины слоя.
В последние годы для описания регрессионной зависимости стали широко использоваться сплайны. Сплайном называют конечную совокупность гладко склеенных между собой полиномов, каждый из которых определен на своей подобласти изменений регрессора. Подобно локально параметрическим методам оценивания сплайны позволяют удачно сочетать достоинства локальных методов ( уменьшение смещения оценки) с высокой эффективностью параметрических процедур оценивания.
Построенная линия регрессии является оценкой теоретической регрессионной зависимости.

При расчете температуры процесса по регрессионным зависимостям с жесткими коэффициентами уравнение ( 11 125) усложняется до полинома 2 - 3 - й степени.
Модели (1.32) и (1.33) имеют характер регрессионных зависимостей. Параметры модели, подлежащие определению из экспериментальных данных, содержатся в выражениях передаточных функций. Последние очень часто задаются в виде отношения полиномов от соответствующих аргументов.
Знакомство с методами построения и анализа регрессионных зависимостей между двумя переменными величинами, когда значения зависимой величины искажены случайными ошибками.
Под адекватностью модели понимается ее соответствие истинной регрессионной зависимости. Под остатками понимаются отклонения между наблюдаемыми значениями и их оценками по модели. Случайный характер оценок коэффициентов приводит к тому, что в регрессионную модель может быть включен не влияющий фактор, для которого оценка коэффициента получилась отличной от нуля. Такой коэффициент является незначимым, а его математическое ожидание равно нулю. Поэтому задача проверки значимости оценок коэффициентов сводится к статистической проверке нулевой гипотезы / / о 0 против альтернативной гипотезы.
Полученное значение критерия R20 919 для исследуемой регрессионной зависимости свидетельствует о том, что динамика индекса интенсивности промышленного производства в химической и нефтехимической промышленности в достаточной мере определяет изменение объемов выпуска кальцинированной соды. Качество модели определяется по критерию Фишера.
Под адекватностью модели понимается ее соответствие истинной регрессионной зависимости. Под остатками понимаются отклонения между наблюдаемыми значениями и их оценками по модели. Случайный характер оценок коэффициентов приводит к тому, что в регрессионную модель может быть включен не влияющий фактор, для которого оценка коэффициента получилась отличной от нуля. Такой коэффициент является незначимым, а его математическое ожидание равно нулю. Поэтому задача проверки значимости оценок коэффициентов сводится к статистической проверке нулевой гипотезы Я0 0 против альтернативной гипотезы.
Рассмотрим теперь в качестве признака состояния регрессионную зависимость между различными участками спектра одного и того же вибрационного процесса редуктора.
Метод наименьших квадратов предполагает, что вид регрессионной зависимости заранее известен.
Зависимость текущего КИН от удельных запасов на скважину. 2 - залежи, разрабатываемые на естественном режиме. 1 5 -залежи, разрабатываемые с заводнением. Дифференцированный по залежам анализ выработки запасов позволил получить регрессионные зависимости ( рис. 3, 4) текущего коэффициента извлечения нефти ( КИН) от удельных запасов нефти и интенсивности системы заводнения. При одних и тех же удельных запасах нефти на скважину ( рис. 3) текущий КИН выше по залежам с заводнением, чем по аналогичным залежам, разрабатываемым без воздействия.
Результаты базовых испытаний на устлость представляют в виде регрессионных зависимостей между характерным напряжением цикла s ( амплитудой, размахом или максимальным напряжением цикла) и числом циклов Nb ( s r) до видимого повреждения образца или его полного разрушения.
Интересно, что во многих случаях разница между соответствующими регрессионными зависимостями для новых и подержанных товаров незначительна, и ею можно пренебречь.
По экспериментальным данным с использованием компьютерных программ были получены регрессионные зависимости, связывающие давление в паровой фазе с соотношением объемов паровой и жидкой фаз, применительно к процессу опорожнения нефтепровода.
В последние годы сплайны стали широко использоваться при аппроксимации регрессионных зависимостей. Основная часть этого параграфа посвящена одномерным сплайнам.
Применение статистических подходов и методов для решения задач восстановления регрессионных зависимостей имеет ряд особенностей и специфических моментов, требующих качественного анализа и разработки эффективных численных алгоритмов получения приближенных решений.

По экспериментальным данным ( см. рис. 71) были построены регрессионные зависимости.
Качественные результаты, вытекающие из табл. 1, позволили построить простейшие регрессионные зависимости ( линейные) каждой собственной частоты по каждому варьируемому параметру.
Зависимость IK ( 0 от парциального давления СО2 при различных. Расчеты спектральной интенсивности падающего излучения, на основании которых построены приведенные регрессионные зависимости, были проведены применительно к составу продуктов сгорания природного газа при значении парциального давления СО2 рсо. Это связано с тем обстоятельством, что значение коэффициента поглощения а является здесь столь высоким, что во всей рассматриваемой области значений рсо поглощательная способность слоя близка к единице.
Кодированные уровни факторов и средние значения показателей разрушения. Рассмотрим один из примеров использования методики планирования экспериментов для установления регрессионных зависимостей показателей процесса разрушения.
В главах 7 - 13 книги представлены методы и алгоритмы восстановления регрессионных зависимостей и их применения для прогнозирования.
Подпрограммы POLREG, SPLREG, SIPORG и SISPRG предназначены для восстановления одномерных нелинейных регрессионных зависимостей.
 
Loading
на заглавную 10 самыхСловариО сайтеОбратная связь к началу страницы

© 2008 - 2014
словарь online
словарь
одноклассники
XHTML | CSS
Лицензиар ngpedia.ru
1.8.11